chore(config): add black formatter configuration
This commit is contained in:
216
packing_algorithms.c
Normal file
216
packing_algorithms.c
Normal file
@@ -0,0 +1,216 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
// Top 3 Packing Algorithms Implementation
|
||||
|
||||
// 1. First Fit Decreasing (FFD) - Bin Packing Algorithm
|
||||
int compare_desc(const void *a, const void *b) {
|
||||
return (*(int*)b - *(int*)a);
|
||||
}
|
||||
|
||||
int firstFit(int bins[], int n, int c) {
|
||||
int res = 0;
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
int j;
|
||||
for (j = 0; j < res; j++) {
|
||||
if (bins[j] >= bins[i]) {
|
||||
bins[j] -= bins[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (j == res) {
|
||||
bins[res] = c - bins[i];
|
||||
res++;
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
void firstFitDecreasing(int items[], int n, int capacity) {
|
||||
// Sort items in decreasing order
|
||||
qsort(items, n, sizeof(int), compare_desc);
|
||||
|
||||
printf("First Fit Decreasing Algorithm:\n");
|
||||
printf("Number of bins required: %d\n", firstFit(items, n, capacity));
|
||||
}
|
||||
|
||||
// 2. Huffman Coding - Compression Algorithm
|
||||
struct MinHeapNode {
|
||||
char data;
|
||||
unsigned freq;
|
||||
struct MinHeapNode *left, *right;
|
||||
};
|
||||
|
||||
struct MinHeap {
|
||||
unsigned size;
|
||||
unsigned capacity;
|
||||
struct MinHeapNode** array;
|
||||
};
|
||||
|
||||
struct MinHeapNode* newNode(char data, unsigned freq) {
|
||||
struct MinHeapNode* temp = (struct MinHeapNode*)malloc(sizeof(struct MinHeapNode));
|
||||
temp->left = temp->right = NULL;
|
||||
temp->data = data;
|
||||
temp->freq = freq;
|
||||
return temp;
|
||||
}
|
||||
|
||||
struct MinHeap* createMinHeap(unsigned capacity) {
|
||||
struct MinHeap* minHeap = (struct MinHeap*)malloc(sizeof(struct MinHeap));
|
||||
minHeap->size = 0;
|
||||
minHeap->capacity = capacity;
|
||||
minHeap->array = (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*));
|
||||
return minHeap;
|
||||
}
|
||||
|
||||
void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b) {
|
||||
struct MinHeapNode* t = *a;
|
||||
*a = *b;
|
||||
*b = t;
|
||||
}
|
||||
|
||||
void minHeapify(struct MinHeap* minHeap, int idx) {
|
||||
int smallest = idx;
|
||||
int left = 2 * idx + 1;
|
||||
int right = 2 * idx + 2;
|
||||
|
||||
if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq)
|
||||
smallest = left;
|
||||
|
||||
if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq)
|
||||
smallest = right;
|
||||
|
||||
if (smallest != idx) {
|
||||
swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);
|
||||
minHeapify(minHeap, smallest);
|
||||
}
|
||||
}
|
||||
|
||||
int isSizeOne(struct MinHeap* minHeap) {
|
||||
return (minHeap->size == 1);
|
||||
}
|
||||
|
||||
struct MinHeapNode* extractMin(struct MinHeap* minHeap) {
|
||||
struct MinHeapNode* temp = minHeap->array[0];
|
||||
minHeap->array[0] = minHeap->array[minHeap->size - 1];
|
||||
--minHeap->size;
|
||||
minHeapify(minHeap, 0);
|
||||
return temp;
|
||||
}
|
||||
|
||||
void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode) {
|
||||
++minHeap->size;
|
||||
int i = minHeap->size - 1;
|
||||
while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) {
|
||||
minHeap->array[i] = minHeap->array[(i - 1) / 2];
|
||||
i = (i - 1) / 2;
|
||||
}
|
||||
minHeap->array[i] = minHeapNode;
|
||||
}
|
||||
|
||||
void buildMinHeap(struct MinHeap* minHeap) {
|
||||
int n = minHeap->size - 1;
|
||||
for (int i = (n - 1) / 2; i >= 0; --i)
|
||||
minHeapify(minHeap, i);
|
||||
}
|
||||
|
||||
int isLeaf(struct MinHeapNode* root) {
|
||||
return !(root->left) && !(root->right);
|
||||
}
|
||||
|
||||
struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int size) {
|
||||
struct MinHeap* minHeap = createMinHeap(size);
|
||||
for (int i = 0; i < size; ++i)
|
||||
minHeap->array[i] = newNode(data[i], freq[i]);
|
||||
minHeap->size = size;
|
||||
buildMinHeap(minHeap);
|
||||
return minHeap;
|
||||
}
|
||||
|
||||
struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size) {
|
||||
struct MinHeapNode *left, *right, *top;
|
||||
struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size);
|
||||
|
||||
while (!isSizeOne(minHeap)) {
|
||||
left = extractMin(minHeap);
|
||||
right = extractMin(minHeap);
|
||||
|
||||
top = newNode('$', left->freq + right->freq);
|
||||
top->left = left;
|
||||
top->right = right;
|
||||
|
||||
insertMinHeap(minHeap, top);
|
||||
}
|
||||
return extractMin(minHeap);
|
||||
}
|
||||
|
||||
void printArr(int arr[], int n) {
|
||||
printf("Huffman Codes:\n");
|
||||
for (int i = 0; i < n; ++i)
|
||||
printf("%d ", arr[i]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void printCodes(struct MinHeapNode* root, int arr[], int top) {
|
||||
if (root->left) {
|
||||
arr[top] = 0;
|
||||
printCodes(root->left, arr, top + 1);
|
||||
}
|
||||
if (root->right) {
|
||||
arr[top] = 1;
|
||||
printCodes(root->right, arr, top + 1);
|
||||
}
|
||||
if (isLeaf(root)) {
|
||||
printf("%c: ", root->data);
|
||||
printArr(arr, top);
|
||||
}
|
||||
}
|
||||
|
||||
void HuffmanCodes(char data[], int freq[], int size) {
|
||||
struct MinHeapNode* root = buildHuffmanTree(data, freq, size);
|
||||
int arr[100], top = 0;
|
||||
printCodes(root, arr, top);
|
||||
}
|
||||
|
||||
// 3. Run-Length Encoding - Simple Compression Algorithm
|
||||
void runLengthEncoding(char input[]) {
|
||||
int len = strlen(input);
|
||||
printf("Run-Length Encoding:\n");
|
||||
|
||||
for (int i = 0; i < len; i++) {
|
||||
int count = 1;
|
||||
while (i < len - 1 && input[i] == input[i+1]) {
|
||||
count++;
|
||||
i++;
|
||||
}
|
||||
printf("%c%d", input[i], count);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
int main() {
|
||||
printf("Top 3 Packing Algorithms Implementation\n\n");
|
||||
|
||||
// Example for First Fit Decreasing
|
||||
int items[] = {10, 60, 20, 30, 70, 40, 50};
|
||||
int n = sizeof(items)/sizeof(items[0]);
|
||||
int capacity = 100;
|
||||
firstFitDecreasing(items, n, capacity);
|
||||
printf("\n");
|
||||
|
||||
// Example for Huffman Coding
|
||||
char arr[] = {'A', 'B', 'C', 'D'};
|
||||
int freq[] = {5, 9, 12, 13};
|
||||
int size = sizeof(arr)/sizeof(arr[0]);
|
||||
HuffmanCodes(arr, freq, size);
|
||||
printf("\n");
|
||||
|
||||
// Example for Run-Length Encoding
|
||||
char str[] = "aaabbccccdddd";
|
||||
runLengthEncoding(str);
|
||||
|
||||
return 0;
|
||||
}
|
||||
296
red_black_tree.py
Normal file
296
red_black_tree.py
Normal file
@@ -0,0 +1,296 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Реализация красно-чёрного дерева (Red-Black Tree) на Python.
|
||||
|
||||
Красно-чёрное дерево — это самобалансирующееся бинарное дерево поиска,
|
||||
которое гарантирует логарифмическое время выполнения операций вставки,
|
||||
удаления и поиска.
|
||||
|
||||
Свойства красно-чёрного дерева:
|
||||
1. Каждый узел либо красный, либо чёрный.
|
||||
2. Корень дерева всегда чёрный.
|
||||
3. Все листья (NIL) чёрные.
|
||||
4. Если узел красный, то оба его потомка чёрные.
|
||||
5. Для каждого узла все пути от него до листьев содержат одинаковое
|
||||
количество чёрных узлов.
|
||||
"""
|
||||
|
||||
class Node:
|
||||
def __init__(self, key, color="red"):
|
||||
self.key = key
|
||||
self.left = None
|
||||
self.right = None
|
||||
self.parent = None
|
||||
self.color = color # "red" или "black"
|
||||
|
||||
|
||||
class RedBlackTree:
|
||||
def __init__(self):
|
||||
self.NIL = Node(None, "black") # Листовые узлы
|
||||
self.root = self.NIL
|
||||
|
||||
def insert(self, key):
|
||||
"""Вставка нового узла в дерево."""
|
||||
new_node = Node(key)
|
||||
new_node.left = self.NIL
|
||||
new_node.right = self.NIL
|
||||
|
||||
parent = None
|
||||
current = self.root
|
||||
|
||||
# Поиск места для вставки
|
||||
while current != self.NIL:
|
||||
parent = current
|
||||
if new_node.key < current.key:
|
||||
current = current.left
|
||||
else:
|
||||
current = current.right
|
||||
|
||||
new_node.parent = parent
|
||||
if parent is None:
|
||||
self.root = new_node
|
||||
elif new_node.key < parent.key:
|
||||
parent.left = new_node
|
||||
else:
|
||||
parent.right = new_node
|
||||
|
||||
# Исправление свойств дерева
|
||||
self._fix_insert(new_node)
|
||||
|
||||
def _fix_insert(self, node):
|
||||
"""Исправление свойств дерева после вставки."""
|
||||
while node != self.root and node.parent.color == "red":
|
||||
if node.parent == node.parent.parent.left:
|
||||
uncle = node.parent.parent.right
|
||||
if uncle.color == "red":
|
||||
# Случай 1: Дядя красный
|
||||
node.parent.color = "black"
|
||||
uncle.color = "black"
|
||||
node.parent.parent.color = "red"
|
||||
node = node.parent.parent
|
||||
else:
|
||||
if node == node.parent.right:
|
||||
# Случай 2: Дядя чёрный, узел — правый потомок
|
||||
node = node.parent
|
||||
self._left_rotate(node)
|
||||
# Случай 3: Дядя чёрный, узел — левый потомок
|
||||
node.parent.color = "black"
|
||||
node.parent.parent.color = "red"
|
||||
self._right_rotate(node.parent.parent)
|
||||
else:
|
||||
uncle = node.parent.parent.left
|
||||
if uncle.color == "red":
|
||||
# Случай 1: Дядя красный
|
||||
node.parent.color = "black"
|
||||
uncle.color = "black"
|
||||
node.parent.parent.color = "red"
|
||||
node = node.parent.parent
|
||||
else:
|
||||
if node == node.parent.left:
|
||||
# Случай 2: Дядя чёрный, узел — левый потомок
|
||||
node = node.parent
|
||||
self._right_rotate(node)
|
||||
# Случай 3: Дядя чёрный, узел — правый потомок
|
||||
node.parent.color = "black"
|
||||
node.parent.parent.color = "red"
|
||||
self._left_rotate(node.parent.parent)
|
||||
|
||||
self.root.color = "black"
|
||||
|
||||
def _left_rotate(self, x):
|
||||
"""Левый поворот вокруг узла x."""
|
||||
y = x.right
|
||||
x.right = y.left
|
||||
if y.left != self.NIL:
|
||||
y.left.parent = x
|
||||
y.parent = x.parent
|
||||
if x.parent is None:
|
||||
self.root = y
|
||||
elif x == x.parent.left:
|
||||
x.parent.left = y
|
||||
else:
|
||||
x.parent.right = y
|
||||
y.left = x
|
||||
x.parent = y
|
||||
|
||||
def _right_rotate(self, y):
|
||||
"""Правый поворот вокруг узла y."""
|
||||
x = y.left
|
||||
y.left = x.right
|
||||
if x.right != self.NIL:
|
||||
x.right.parent = y
|
||||
x.parent = y.parent
|
||||
if y.parent is None:
|
||||
self.root = x
|
||||
elif y == y.parent.left:
|
||||
y.parent.left = x
|
||||
else:
|
||||
y.parent.right = x
|
||||
x.right = y
|
||||
y.parent = x
|
||||
|
||||
def search(self, key):
|
||||
"""Поиск узла по ключу."""
|
||||
current = self.root
|
||||
while current != self.NIL and key != current.key:
|
||||
if key < current.key:
|
||||
current = current.left
|
||||
else:
|
||||
current = current.right
|
||||
return current if current != self.NIL else None
|
||||
|
||||
def delete(self, key):
|
||||
"""Удаление узла по ключу."""
|
||||
node = self.search(key)
|
||||
if node is None:
|
||||
return
|
||||
|
||||
original_color = node.color
|
||||
if node.left == self.NIL:
|
||||
x = node.right
|
||||
self._transplant(node, node.right)
|
||||
elif node.right == self.NIL:
|
||||
x = node.left
|
||||
self._transplant(node, node.left)
|
||||
else:
|
||||
successor = self._minimum(node.right)
|
||||
original_color = successor.color
|
||||
x = successor.right
|
||||
if successor.parent == node:
|
||||
x.parent = successor
|
||||
else:
|
||||
self._transplant(successor, successor.right)
|
||||
successor.right = node.right
|
||||
successor.right.parent = successor
|
||||
|
||||
self._transplant(node, successor)
|
||||
successor.left = node.left
|
||||
successor.left.parent = successor
|
||||
successor.color = node.color
|
||||
|
||||
if original_color == "black":
|
||||
self._fix_delete(x)
|
||||
|
||||
def _transplant(self, u, v):
|
||||
"""Замена поддерева u поддеревом v."""
|
||||
if u.parent is None:
|
||||
self.root = v
|
||||
elif u == u.parent.left:
|
||||
u.parent.left = v
|
||||
else:
|
||||
u.parent.right = v
|
||||
v.parent = u.parent
|
||||
|
||||
def _minimum(self, node):
|
||||
"""Поиск узла с минимальным ключом в поддереве."""
|
||||
while node.left != self.NIL:
|
||||
node = node.left
|
||||
return node
|
||||
|
||||
def _fix_delete(self, x):
|
||||
"""Исправление свойств дерева после удаления."""
|
||||
while x != self.root and x.color == "black":
|
||||
if x == x.parent.left:
|
||||
sibling = x.parent.right
|
||||
if sibling.color == "red":
|
||||
sibling.color = "black"
|
||||
x.parent.color = "red"
|
||||
self._left_rotate(x.parent)
|
||||
sibling = x.parent.right
|
||||
|
||||
if sibling.left.color == "black" and sibling.right.color == "black":
|
||||
sibling.color = "red"
|
||||
x = x.parent
|
||||
else:
|
||||
if sibling.right.color == "black":
|
||||
sibling.left.color = "black"
|
||||
sibling.color = "red"
|
||||
self._right_rotate(sibling)
|
||||
sibling = x.parent.right
|
||||
|
||||
sibling.color = x.parent.color
|
||||
x.parent.color = "black"
|
||||
sibling.right.color = "black"
|
||||
self._left_rotate(x.parent)
|
||||
x = self.root
|
||||
else:
|
||||
sibling = x.parent.left
|
||||
if sibling.color == "red":
|
||||
sibling.color = "black"
|
||||
x.parent.color = "red"
|
||||
self._right_rotate(x.parent)
|
||||
sibling = x.parent.left
|
||||
|
||||
if sibling.right.color == "black" and sibling.left.color == "black":
|
||||
sibling.color = "red"
|
||||
x = x.parent
|
||||
else:
|
||||
if sibling.left.color == "black":
|
||||
sibling.right.color = "black"
|
||||
sibling.color = "red"
|
||||
self._left_rotate(sibling)
|
||||
sibling = x.parent.left
|
||||
|
||||
sibling.color = x.parent.color
|
||||
x.parent.color = "black"
|
||||
sibling.left.color = "black"
|
||||
self._right_rotate(x.parent)
|
||||
x = self.root
|
||||
|
||||
x.color = "black"
|
||||
|
||||
def inorder_traversal(self, node=None):
|
||||
"""Обход дерева в порядке возрастания."""
|
||||
if node is None:
|
||||
node = self.root
|
||||
result = []
|
||||
if node != self.NIL:
|
||||
result += self.inorder_traversal(node.left)
|
||||
result.append(node.key)
|
||||
result += self.inorder_traversal(node.right)
|
||||
return result
|
||||
|
||||
def print_tree(self, node=None, indent="", last=True):
|
||||
"""Вывод дерева в консоль (для визуализации)."""
|
||||
if node is None:
|
||||
node = self.root
|
||||
if node != self.NIL:
|
||||
print(indent, end="")
|
||||
if last:
|
||||
print("R----", end="")
|
||||
indent += " "
|
||||
else:
|
||||
print("L----", end="")
|
||||
indent += "| "
|
||||
|
||||
color = node.color
|
||||
print(f"{node.key}({color})")
|
||||
self.print_tree(node.left, indent, False)
|
||||
self.print_tree(node.right, indent, True)
|
||||
|
||||
|
||||
# Пример использования
|
||||
if __name__ == "__main__":
|
||||
rbt = RedBlackTree()
|
||||
keys = [7, 3, 18, 10, 22, 8, 11, 26]
|
||||
for key in keys:
|
||||
rbt.insert(key)
|
||||
|
||||
print("Обход дерева в порядке возрастания:")
|
||||
print(rbt.inorder_traversal())
|
||||
|
||||
print("\nСтруктура дерева:")
|
||||
rbt.print_tree()
|
||||
|
||||
print("\nПоиск узла с ключом 10:")
|
||||
node = rbt.search(10)
|
||||
print(f"Найден узел: {node.key} ({node.color})")
|
||||
|
||||
print("\nУдаление узла с ключом 18:")
|
||||
rbt.delete(18)
|
||||
print("Обход дерева после удаления:")
|
||||
print(rbt.inorder_traversal())
|
||||
|
||||
print("\nСтруктура дерева после удаления:")
|
||||
rbt.print_tree()
|
||||
Reference in New Issue
Block a user