216 lines
5.6 KiB
C
216 lines
5.6 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
// Top 3 Packing Algorithms Implementation
|
|
|
|
// 1. First Fit Decreasing (FFD) - Bin Packing Algorithm
|
|
int compare_desc(const void *a, const void *b) {
|
|
return (*(int*)b - *(int*)a);
|
|
}
|
|
|
|
int firstFit(int bins[], int n, int c) {
|
|
int res = 0;
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
int j;
|
|
for (j = 0; j < res; j++) {
|
|
if (bins[j] >= bins[i]) {
|
|
bins[j] -= bins[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (j == res) {
|
|
bins[res] = c - bins[i];
|
|
res++;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void firstFitDecreasing(int items[], int n, int capacity) {
|
|
// Sort items in decreasing order
|
|
qsort(items, n, sizeof(int), compare_desc);
|
|
|
|
printf("First Fit Decreasing Algorithm:\n");
|
|
printf("Number of bins required: %d\n", firstFit(items, n, capacity));
|
|
}
|
|
|
|
// 2. Huffman Coding - Compression Algorithm
|
|
struct MinHeapNode {
|
|
char data;
|
|
unsigned freq;
|
|
struct MinHeapNode *left, *right;
|
|
};
|
|
|
|
struct MinHeap {
|
|
unsigned size;
|
|
unsigned capacity;
|
|
struct MinHeapNode** array;
|
|
};
|
|
|
|
struct MinHeapNode* newNode(char data, unsigned freq) {
|
|
struct MinHeapNode* temp = (struct MinHeapNode*)malloc(sizeof(struct MinHeapNode));
|
|
temp->left = temp->right = NULL;
|
|
temp->data = data;
|
|
temp->freq = freq;
|
|
return temp;
|
|
}
|
|
|
|
struct MinHeap* createMinHeap(unsigned capacity) {
|
|
struct MinHeap* minHeap = (struct MinHeap*)malloc(sizeof(struct MinHeap));
|
|
minHeap->size = 0;
|
|
minHeap->capacity = capacity;
|
|
minHeap->array = (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*));
|
|
return minHeap;
|
|
}
|
|
|
|
void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b) {
|
|
struct MinHeapNode* t = *a;
|
|
*a = *b;
|
|
*b = t;
|
|
}
|
|
|
|
void minHeapify(struct MinHeap* minHeap, int idx) {
|
|
int smallest = idx;
|
|
int left = 2 * idx + 1;
|
|
int right = 2 * idx + 2;
|
|
|
|
if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq)
|
|
smallest = left;
|
|
|
|
if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq)
|
|
smallest = right;
|
|
|
|
if (smallest != idx) {
|
|
swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);
|
|
minHeapify(minHeap, smallest);
|
|
}
|
|
}
|
|
|
|
int isSizeOne(struct MinHeap* minHeap) {
|
|
return (minHeap->size == 1);
|
|
}
|
|
|
|
struct MinHeapNode* extractMin(struct MinHeap* minHeap) {
|
|
struct MinHeapNode* temp = minHeap->array[0];
|
|
minHeap->array[0] = minHeap->array[minHeap->size - 1];
|
|
--minHeap->size;
|
|
minHeapify(minHeap, 0);
|
|
return temp;
|
|
}
|
|
|
|
void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode) {
|
|
++minHeap->size;
|
|
int i = minHeap->size - 1;
|
|
while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) {
|
|
minHeap->array[i] = minHeap->array[(i - 1) / 2];
|
|
i = (i - 1) / 2;
|
|
}
|
|
minHeap->array[i] = minHeapNode;
|
|
}
|
|
|
|
void buildMinHeap(struct MinHeap* minHeap) {
|
|
int n = minHeap->size - 1;
|
|
for (int i = (n - 1) / 2; i >= 0; --i)
|
|
minHeapify(minHeap, i);
|
|
}
|
|
|
|
int isLeaf(struct MinHeapNode* root) {
|
|
return !(root->left) && !(root->right);
|
|
}
|
|
|
|
struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int size) {
|
|
struct MinHeap* minHeap = createMinHeap(size);
|
|
for (int i = 0; i < size; ++i)
|
|
minHeap->array[i] = newNode(data[i], freq[i]);
|
|
minHeap->size = size;
|
|
buildMinHeap(minHeap);
|
|
return minHeap;
|
|
}
|
|
|
|
struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size) {
|
|
struct MinHeapNode *left, *right, *top;
|
|
struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size);
|
|
|
|
while (!isSizeOne(minHeap)) {
|
|
left = extractMin(minHeap);
|
|
right = extractMin(minHeap);
|
|
|
|
top = newNode('$', left->freq + right->freq);
|
|
top->left = left;
|
|
top->right = right;
|
|
|
|
insertMinHeap(minHeap, top);
|
|
}
|
|
return extractMin(minHeap);
|
|
}
|
|
|
|
void printArr(int arr[], int n) {
|
|
printf("Huffman Codes:\n");
|
|
for (int i = 0; i < n; ++i)
|
|
printf("%d ", arr[i]);
|
|
printf("\n");
|
|
}
|
|
|
|
void printCodes(struct MinHeapNode* root, int arr[], int top) {
|
|
if (root->left) {
|
|
arr[top] = 0;
|
|
printCodes(root->left, arr, top + 1);
|
|
}
|
|
if (root->right) {
|
|
arr[top] = 1;
|
|
printCodes(root->right, arr, top + 1);
|
|
}
|
|
if (isLeaf(root)) {
|
|
printf("%c: ", root->data);
|
|
printArr(arr, top);
|
|
}
|
|
}
|
|
|
|
void HuffmanCodes(char data[], int freq[], int size) {
|
|
struct MinHeapNode* root = buildHuffmanTree(data, freq, size);
|
|
int arr[100], top = 0;
|
|
printCodes(root, arr, top);
|
|
}
|
|
|
|
// 3. Run-Length Encoding - Simple Compression Algorithm
|
|
void runLengthEncoding(char input[]) {
|
|
int len = strlen(input);
|
|
printf("Run-Length Encoding:\n");
|
|
|
|
for (int i = 0; i < len; i++) {
|
|
int count = 1;
|
|
while (i < len - 1 && input[i] == input[i+1]) {
|
|
count++;
|
|
i++;
|
|
}
|
|
printf("%c%d", input[i], count);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
int main() {
|
|
printf("Top 3 Packing Algorithms Implementation\n\n");
|
|
|
|
// Example for First Fit Decreasing
|
|
int items[] = {10, 60, 20, 30, 70, 40, 50};
|
|
int n = sizeof(items)/sizeof(items[0]);
|
|
int capacity = 100;
|
|
firstFitDecreasing(items, n, capacity);
|
|
printf("\n");
|
|
|
|
// Example for Huffman Coding
|
|
char arr[] = {'A', 'B', 'C', 'D'};
|
|
int freq[] = {5, 9, 12, 13};
|
|
int size = sizeof(arr)/sizeof(arr[0]);
|
|
HuffmanCodes(arr, freq, size);
|
|
printf("\n");
|
|
|
|
// Example for Run-Length Encoding
|
|
char str[] = "aaabbccccdddd";
|
|
runLengthEncoding(str);
|
|
|
|
return 0;
|
|
} |